Wanganui District Council

Land Stability Assessment Areas

Mowhanau & Roberts-Patterson

Risk Study Report
Wanganui District Council

Land Stability Assessment Areas

Mowhanau & Roberts-Patterson

Risk Study Report

Prepared By
Doug Mason
Senior Engineering Geologist

Reviewed By
P Brabhaharan
Technical Principal, Geotechnical/
Earthquake Engineering & Resilience

Approved for Release By
Mark Frampton
Principal Geotechnical Engineer

Opus International Consultants Ltd
Wellington Civil
L7, Majestic Centre, 100 Willis St
PO Box 12 003, Wellington 6144
New Zealand

Telephone: +64 4 471 7000
Facsimile: +64 4 471 1397
Date: July 2015
Reference: GER 2015-02
Status: Issue 1
Project No: 5W1100.13

© Opus International Consultants Ltd 2015
Contents

Executive Summary ... 1

1 Introduction .. 2

2 Study Methodology ... 3

3 Site Description ... 4
 3.1 Geomorphology .. 4
 3.2 Geology .. 5

4 Investigations .. 5
 4.1 Desk Study ... 5
 4.2 Engineering Geology Mapping ... 5

5 Slope Hazard Characterisation .. 6
 5.1 Factors Influencing Instability ... 6
 5.2 Observed Instability Features .. 7

6 Qualitative Risk Assessment ... 10
 6.1 Level of Assessment ... 10
 6.2 Assessment Method ... 10

7 Land Stability Assessment Areas ... 10
 7.1 Area A: Areas of high to very high landslide hazard risk 10
 7.2 Area B: Areas of moderate landslide hazard risk ... 11
 7.3 LSA Area Maps ... 11
 7.4 Existing Modifications to Properties ... 12

8 Recommendations ... 12

9 Limitations of the Assessment .. 12

10 References .. 13
Tables
Table 1 Qualitative risk assessment table (AGS, 2007a) ... 10

Illustrations
Illustration 1 Study area locations .. 2
Illustration 2 Shallow slip in topsoil, near Patterson Street .. 7
Illustration 3 Area of repaired cracking/settlement in the road pavement, with tilted fence
indicating soil creep below the road, Mowhanau ... 8
Illustration 4 Shallow seated slips on steep hillslopes below Broadview Heights, Mowhanau 8
Illustration 5 Slips on steep slopes below terrace surface, Broadview Heights, Mowhanau 9
Illustration 6 Steep bluffs showing evidence for slumping/collapse, with accumulation of slip
debris at toe, Kai Iwi Stream, Mowhanau .. 9

Figures
Figures 1 Location plan
Figures 2-3 Land Stability Assessment Area maps

Appendices
Appendix A Engineering geology maps (Figures A1.1 – A1.6)
Appendix B AGS (2007) risk assessment tables
Executive Summary

Experience from natural hazard events highlights the importance of hazard, vulnerability and risk assessments in land use planning and development, to ensure the future resilience of communities. Wanganui District Council is currently undertaking a review of its District Plan, and has identified the need to manage risks from land instability. Consideration of the extent of land within Wanganui at risk of land slip has identified a list of areas which are priorities for further study. The Council has commissioned Opus International Consultants to carry out an assessment of the stability issues on hillslopes in two parts of the Wanganui district: the settlement of Mowhanau, on the coast 13 km to the west of Wanganui city, and an area bounded by Roberts Ave and Patterson St in the northern suburb of Aramoho.

Mapping of the distribution and characteristics of slope instability hazards was carried out within those areas. Instability features observed during the mapping include shallow seated topsoil and regolith slides, shallow seated slumps and slides on steep slopes, creep failures of soil and embankments, cliff collapse and rock fall from steep bluffs along the coastline.

Qualitative assessment of risks to people and property were assessed on an area-wide basis, and were used to define two levels of land instability susceptibility. Areas classified as type A comprise land that is steep and shows evidence of instability, with a high risk of further instability and damage to property or life. Council should discourage subdivision and new dwellings in these high risk areas. Areas classified as type B are marginal slopes, which have shallower slope angles but are still prone to instability. Geotechnical investigations should be carried out prior to any development proposal being submitted for resource consent. The investigations are required for detailed assessment of the slope stability hazards. The investigations and assessment will determine the risk to property from landsliding, and therefore whether the land is suitable for development, with mitigation measures implemented, or whether it is unsuitable for further development.

It is recommended that the results of the mapping are incorporated into the District Plan through overlay maps and by introducing objectives, policies and rules that apply additional considerations and restrictions specific to the land instability issues present in each area. This will help achieve greater resilience of the community to natural hazards through a proactive approach to land use and development in hazard prone areas.
1 Introduction

Wanganui District Council is currently undertaking a staged review of its District Plan, which includes investigating ways to manage natural hazards. The Wanganui district is affected by a number of natural hazards; in particular, parts of the urban area are susceptible to slope instability and erosion. Consideration of the extent of the land within the Wanganui District at risk of land slip has identified a list of Land Stability Assessment Areas which are priorities for further study. These areas are being examined in a staged approach to identify the extent of susceptibility to land instability hazards. This process identifies areas of land susceptible to instability from an areal perspective, to assist the Council in development of land development controls.

Opus International Consultants (Opus) has been commissioned to undertake the assessment of slope stability issues within the study areas. The following areas have been investigated as part of this ongoing study, and the following reports prepared:

- ANZAC Parade to Putiki Drive (Opus, 2011);
- Shakespeare Cliff (Opus, 2012);
- Ikitara Road, Bastia Hill and Durie Hill (Opus, 2014).

This report represents the next stage in this process, and summarises the study results for the following areas, as shown on Illustration 1 below:

- **Mowhanau**: Mowhanau village area southwest of Handley Road, including Mowhanau Drive, Tangi Street, Sunset Parade, Waitangi Parade and Broadview Heights;
- **Roberts-Patterson**: hillslopes to the northeast of Roberts Avenue and to the northwest of Patterson Street.

Illustration 1 Study area locations
This report details our investigations which included a desk study and reconnaissance level engineering geological mapping of the study area. It provides an appraisal of the stability issues in the area, landslide susceptibility mapping process, and recommendations for measures to manage the effects of land instability hazards for any future developments.

2 Study Methodology

The following points describe the approach taken in carrying out this study:

1. Identify areas with potential for land instability issues for further study.

 Wanganui District Council has identified some urban areas within the district with potential for land instability issues, which are being investigated in a staged approach. This study forms the next in that process.

2. Identify the geology and geomorphology of the study areas.

 This process involves examination of stereo aerial photographs, a desk study of geology maps and other available information, and reconnaissance-level engineering geological mapping to observe and describe the geology and geomorphology of the study areas, and in particular to identify areas of instability and other hillslope features.

3. Identify past slope instability and areas of known slope instability.

 Instability features were identified during the examination of historical aerial photos, and areas of recent or active instability were noted during the reconnaissance mapping and from discussions with local Opus and Council engineers.

4. Characterise the slope angle of hillslopes and the hillside slope angles generally susceptible to instability.

 Hillslope characteristics that influence the location and nature of instability features were identified during the desk study and mapping phases and captured onto a GIS platform. The GIS database allows the distribution and extent of instability hazards and affected areas to be mapped spatially. The slope angles were also generated using GIS from available contour and LiDAR data.

5. Carry out a qualitative assessment of the instability hazards and risks.

 A simple, area-wide, qualitative risk assessment was carried out to assist in differentiating areas of hillslope based on the slope instability hazards.

 A classification scheme was developed for the slope hazards, to enable areas of slope to be mapped based on their level of susceptibility to the hazards and the potential for consequent risks.
7. **Produce LSA maps.**

Maps of the slopes classified as LSA Areas were produced at 1:5,000 scale (Figures 2 and 3).

8. **Recommend planning policies and rules to ensure development avoids or mitigates the instability hazard potential.**

This report makes recommendations for incorporating the results of this study into its District Plan.

3 Site Description

3.1 Geomorphology

Mowhanau

The settlement of Mowhanau is situated on the coast approximately 13 km to the west of Wanganui. The geomorphology of the local area is characterised by a series of uplifted, flat-topped marine terrace surfaces. The terrace surfaces have been incised since their uplift by stream and coastal erosion resulting in moderately steep to very steep gullies and side slopes. Kai Iwi Stream and Mowhanau Stream flow from north to south through Mowhanau; these streams have incised gullies into the terraces in this area, and the stream channels are generally meandering with steep to very steep banks. The south-facing slopes along the coastline consist of very steep to near-vertical cliffs and bluffs that rise to ~50 m above sea level.

Land use in Mowhanau is predominantly residential, with some rural land comprising pasture for grazing stock in the northwestern part of the study area. Houses in the residential area have largely been limited to the flat terrace surfaces, with some recent subdivision on moderately sloping land in the southwestern part of the study area. Vegetation cover is predominantly grass and low scrub, with some stands of mature exotic trees on the steep slopes between terrace surfaces, and in the stream gullies.

Roberts-Patterson

This study area lies in the northern Wanganui suburb of Aramoho. The area under investigation consists of the hilly terrain to the northwest of Paterson Street and to the northeast of Roberts Avenue. Here the geomorphology is dominated by flat-topped hills that rise c. 150 m above Whanganui River. The hills are remnants of uplifted Quaternary marine terraces, and consist of broad, flat to gently sloping hilltops flanked by moderately steep to very steep hillslopes.

The terraces have been incised since their uplift, resulting in steep gullies and side slopes. Slope angles generally range between 25° and 55°, with localised near-vertical sections of slope (bluffs).

Land use in the study area is predominantly residential, with an area of rural pasture land in the northeastern part of the study area. Vegetation cover varies from grass and low scrub to mature exotic forest.
3.2 Geology

The Wanganui area has been mapped by the New Zealand Geological Survey (1959) and GNS Science (2008).

The mapping indicates the Mowhanau area is underlain by rocks belonging to the Kai-Iwi Group and Rapanui Formation. These formations comprise siltstone, sandstone, shell beds, limestone and conglomerate, and are of Pleistocene age. These rocks are overlain by marine and alluvial terrace deposits of gravel, sand, silt and peat.

The geological mapping shows the Roberts-Patterson area to be underlain by rocks belonging to the Kai-Iwi and Shakespeare Groups, the Brunswick Formation and St Johns Alluvium. These rocks are comprised of conglomerate, sandstone, siltstone, shell beds and marginal marine deposits and are of Pleistocene age. The rocks are locally overlain by marine terrace deposits and colluvium.

Observations made during the engineering geological mapping were that the siltstone and sandstone materials are exposed within the study areas. These formations are described as soft rock (known colloquially as ‘Papa’ in the central North Island). These rocks are overlain on the hillslopes by variable thicknesses of colluvium and topsoil. In areas where outcrop exposures of the soils were observed, these slope-derived deposits are generally less than 2 m thick, although this thickness will increase down-slope and in gullies where more extensive fan and slip deposits are likely to accumulate. Recent alluvium and estuarine/beach deposits are present in the gullies in the Mowhanau study area.

4 Investigations

4.1 Desk Study

The desk study consisted of a review of available geological maps and reports, and detailed examination of aerial photograph stereo pairs from 1941, 1962, 1993 and 2011.

4.2 Engineering Geology Mapping

This study comprised an appraisal to gain an area-wide understanding of the geology and geomorphology. No intrusive investigations or testing were therefore undertaken as part of this study. To provide information of significant value, these would need to be extensive and costly, given the size of the study area and the range of slope issues. Similarly, the mapping was carried out along publicly-accessible roads and footpaths; individual site or property inspections were not carried out, as this was an area-wide study into the general stability issues.

Site reconnaissance mapping of the hillslopes within the study area was carried out by an Opus engineering geologist. Areas of recent or active instability were noted during the mapping, and areas of historical instability observed from the aerial photos were also examined.

The mapping involved identification of areas of slope instability, typically from landslide scarps, hummocky ground or exposed soil. Some older landslide features were also identified, from degraded scarps and evacuated slopes.
Existing slope mitigation measures, such as retaining walls, were also mapped as they indicate a precedent for past slope instability or show where the natural slopes have been modified. The engineering geological maps are given in Appendix A.

5 Slope Hazard Characterisation

5.1 Factors Influencing Instability

5.1.1 Slope Materials

The slope materials in the eastern Wanganui area are predominantly siltstone, sandstone and conglomerate of Quaternary age. These are overlain by a surficial zone of soil comprised of highly weathered rock, colluvium, loess and topsoil. Alluvial and marine (estuarine/beach) deposits are present in the stream valleys and tributary gullies in the Mowhanau area. These geologically young materials are susceptible to failure, particularly on sparsely vegetated slopes following prolonged or intense rainfall.

The underlying siltstone materials are described as soft rock. These soft rocks typically fail by three progressive failure modes:

1. Slabbing, where slabs 300 mm – 400 mm thick fail along planes subparallel to the slope. Slabbing is typically observed on siltstone slopes of angles greater than 45°.
2. Slaking, where the surface disaggregates, or frets, to form fragments ranging from silt to gravel sized. Slaking is more common in finer-grained rocks (Read and Millar, 1990).
3. Deeper seated instability particularly where there are other unfavourable factors such as high groundwater pressures or undermining of the slope by river erosion.

Sand and gravel materials were observed in parts of the study area, and failure of the surficial materials by translational sliding was mapped within the study areas.

5.1.2 Slope Angle

Engineering geological mapping of landslides within the study areas has shown instability is apparent on hillsides with slope angles greater than 40°, and is common where slope angles are greater than 50°. Deeper seated failures are also more common on slopes steeper than 50°. Mapped instability features and slope angles are shown on the engineering geology maps in Appendix A.

In some localised areas, slopes of less than 40° also show instability features. However this was generally restricted to shallow translational failures of topsoil/regolith. Slopes with angles of 30° to 40° are marginally stable and may pose a risk to development.

5.1.3 Storm and Earthquake Events

The hillslopes are susceptible to instability following periods of prolonged or intense rainfall, due to rising groundwater levels and a consequent increase in pore water pressure within the slope. Strong ground shaking during earthquakes could also trigger slope instability, and there is evidence for earthquake-induced landslides in the Wanganui area (Opus, 2012).
5.1.4 Modification of Natural Slopes for Housing and Infrastructure

Excavation into natural slopes may cause instability by oversteepening of the slope, particularly if the excavation is into the toe of a slope. The formation of fill embankments may also contribute to landsliding, due to the increased load on slopes. Evidence of deformation of the road pavement due to downslope movement of the soil at the crest of the slope was observed at Handley Road in Mowhanau (Illustration 3).

5.2 Observed Instability Features

A range of instability features were recorded during the engineering geological mapping. These include:

- Topsoil and regolith slides (e.g. Illustration 2);
- Creep failures of soil, leading to cracking and rotation of road pavements at slope crests (e.g. Illustration 3);
- Shallow seated slumps and slides on steep slopes (e.g. Illustration 4 and Illustration 5);
- Slabbing and collapse of steep coastal cliffs (e.g. Illustration 6).

The majority of recent instability features observed during the mapping were shallow seated failures of topsoil, regolith and shallow soft rock materials. Evidence for deep-seated failures in the underlying siltstone was rare.

Instability features such as translational landslides and slumps were commonly observed on slopes steeper than 40° to 45°. Shallower failures of surficial materials were observed on flatter slopes, with angles typically steeper than 30° to 40°.

Illustration 2 Shallow slip in topsoil, near Patterson Street.
Illustration 3 Area of repaired cracking/settlement in the road pavement and shoulder, with tilted fence indicating soil creep below Handley Road, Mowhanau.

Illustration 4 Shallow seated slips on steep hillslopes below Broadview Heights, Mowhanau.
Illustration 5 Slips on steep slopes below terrace surface, Broadview Heights, Mowhanau.

Illustration 6 Steep bluffs showing evidence for slumping/collapse, with accumulation of slip debris at toe, Kai Iwi Stream, Mowhanau.
6 Qualitative Risk Assessment

6.1 Level of Assessment

A qualitative assessment of risk to property from failure of the hillslopes has been undertaken. This is based on area-wide observation of instability features and characteristics and is not for individual properties. The actual risks at a particular property may differ, and would require more detailed site-specific information to confirm.

6.2 Assessment Method

The qualitative risk assessment has been undertaken with reference to the guidelines for landslide susceptibility, hazard and risk zoning published by the Australian Geomechanics Society (AGS, 2007a, 2007b).

A summary of the qualitative risk assessment is presented in Table 1. Explanation of the risk assessment tables and terminology is given in Appendix B.

Table 1 Qualitative risk assessment table (AGS, 2007a)

<table>
<thead>
<tr>
<th>Likelihood¹</th>
<th>1 Catastrophic (200%)</th>
<th>2 Major (60%)</th>
<th>3 Medium (20%)</th>
<th>4 Minor (5%)</th>
<th>5 Insignificant (0.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Almost certain (10⁻¹)</td>
<td>Very high</td>
<td>Very high</td>
<td>Very high</td>
<td>High</td>
<td>Moderate³</td>
</tr>
<tr>
<td>B: Likely (10⁻²)</td>
<td>Very high</td>
<td>Very high</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>C: Possible (10⁻³)</td>
<td>Very high</td>
<td>High</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Very low</td>
</tr>
<tr>
<td>D: Unlikely (10⁻⁴)</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Very low</td>
</tr>
<tr>
<td>E: Rare (10⁻⁵)</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
<tr>
<td>F: Barely Credible (10⁻⁶)</td>
<td>Low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
<td>Very low</td>
</tr>
</tbody>
</table>

Notes: ¹ Indicative approximate annual probability
² Indicative approximate cost of damage as a percentage of the value of the property
³ For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk

Based on the risk assessment above, two Land Stability Assessment (LSA) areas are proposed to assist the Council in its objective to manage the risks from instability hazards. These areas are discussed below.

7 Land Stability Assessment Areas

7.1 Area A: Areas of high to very high landslide hazard risk

Area A consists of land showing evidence for previous or active slope instability and/or steep slope angles. Observation of instability features from the engineering geological mapping show that the most common forms of slope instability (e.g. shallow slips, soil creep, rotational landslides, rill/gully erosion, cliff slumps or rock fall) predominantly occur on slopes in these areas. These
failures also affect the area immediately upslope of these steep slopes (uphill regression of head scarps), and also downhill areas where landslide slip material can accumulate (runout zone). These areas are the most susceptible to land instability and are classified as the highest hazard (Area A).

The recurrence interval for failure is expected to be approximately 10 to 50 years, giving a likelihood of failure of almost certain to likely during the design life of buildings (Table 1). Such failures have the potential to cause extensive property damage and would likely require significant engineering works for stabilisation, giving a damage consequence of failure of major to catastrophic. The risk rating for such areas is therefore very high (shown as the darker brown area on Table 1), and is unacceptable.

It is recommended that subdivision and new dwellings are actively discouraged within Area A, as the risk of further instability and damage to property or life is very high.

7.2 Area B: Areas of moderate landslide hazard risk

These areas have moderate to steep slope angles of about 30° to 40° but still show some evidence of instability. Failures may occur less frequently on these marginal slopes or may be smaller in extent, depending on site-specific conditions, such as the type and thickness of colluvium and the prevailing groundwater conditions. Therefore the recurrence interval will be variable for marginal slopes – perhaps 50 to 500 years, giving a likelihood of failure of likely to possible. Property damage is likely to be less severe, and the structures may not be completely destroyed, giving a damage consequence to property of medium to major. The level of risk to property is therefore moderate to high (shown as the lighter brown area on Table 1).

Area B consists of marginal land, with a significant landslide hazard, requiring prior geotechnical investigation to confirm its suitability for development. These areas may include areas potentially affected by uphill regression or downhill runout zones. Assessment of the landslide hazard and risk to development should be carried out prior to consideration of any development as part of the consenting process. It is recommended that building consents not be issued unless prior resource consents are obtained for development including geotechnical investigations and assessment that prove their suitability for development with a low risk to the property and life.

The outcome of geotechnical investigations will determine if the risk to property is moderate, high or very high, depending on factors such as the thickness and type of colluvium and groundwater levels. An outcome of very high risk may mean the land will be unsuitable for development (Area A), whereas moderate risk may mean the land can be developed, with mitigation measures designed and implemented to reduce the risk to low if this was practical and feasible. The geotechnical assessment needs to demonstrate that a low risk can be achieved with mitigation.

7.3 LSA Area Maps

The zonation of the hillslopes in the study areas are given on Figures 2 and 3 at 1:5,000 scale. The engineering geological mapping was carried out at approximately 1:2,500 scale, and consequently the area boundaries are approximate only. The LSA maps should be used only at the scale provided.
7.4 Existing Modifications to Properties

The mapping within the study areas was carried out from examination of aerial photographs and observations from roads. As no access was gained to properties, individual property stability assessments have not been made. The LSA classifications therefore refer to the underlying and surrounding ground and do not take into account modifications to properties or structures already in place as it was not possible to undertake such assessments within the scope of this area-wide study. The actual risks at individual properties may differ, confirmation of which would require more detailed, property-specific information on the subsurface conditions and the efficacy of any existing measures to mitigate instability hazards, which is beyond the scope of this current study.

8 Recommendations

We recommend:

1. Subdivision and new dwellings be actively discouraged within the area of very high landslide risk (Area A).
2. Activities on marginal slopes (Area B) be preceded by site-specific geotechnical investigation and assessment prior to consideration of any development as part of the consenting process, to determine the risk of instability and identify treatment measures.
3. The landslide hazard maps be incorporated into Wanganui District Council’s District Plan by way of a Land Stability Assessment overlay on the district planning maps.
4. The areas surrounding current study areas and other areas in the city where slope instability has caused issues in the past be assessed in a similar way as this study to provide uniformity in how these areas are treated in the District Plan.

9 Limitations of the Assessment

The slope stability assessment for this study covers only the area shown in Figures 2 and 3. No assessment of hillside stability has been made for properties outside this area.

Engineering geological mapping within the study area was carried out from examination of aerial photographs and observations from roads within the study areas. No access was gained to properties, and therefore individual property stability assessments have not been made.

This study is an area-wide qualitative appraisal to assist with development of land development controls. The qualitative risk assessment of likelihood and consequence of slope instability hazards was carried out from an areal perspective and individual property land risk assessments have not been carried out. The actual risks at a particular property may differ from those shown in this study and would require more detailed site specific information to confirm.

This study does not consider coastal erosion at Mowhanau. Separate studies have been undertaken that consider this natural hazard.
10 References

Figures
Figure 2

Legend

- Mowhanau
- Roberts Ave/Patterson St

Study Area Boundaries

Scale: Date: Figure:

Prepared By: Preparing For:

Project:

Title:

Wanganui Land Stability Assessment

Mowhanau & Roberts-Patterson

Jul 2015 5W1100.13
Separate studies have been undertaken to assess coastal erosion hazards, and consequently these are not considered as part of this study.
Appendix A

Engineering geology maps
Appendix B
Risk assessment tables
Qualitative Measures of Likelihood

<table>
<thead>
<tr>
<th>Approximate Annual Probability</th>
<th>Implied Indicative Landslide Recurrence Interval</th>
<th>Description</th>
<th>Descriptor</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>10 years</td>
<td>The event is expected to occur over the design life.</td>
<td>ALMOST CERTAIN</td>
<td>A</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>100 years</td>
<td>The event will probably occur under adverse conditions over the design life.</td>
<td>LIKELY</td>
<td>B</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>1000 years</td>
<td>The event could occur under adverse conditions over the design life.</td>
<td>POSSIBLE</td>
<td>C</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>10,000 years</td>
<td>The event might occur under very adverse circumstances over the design life.</td>
<td>UNLIKELY</td>
<td>D</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>100,000 years</td>
<td>The event is conceivable but only under exceptional circumstances over the design life.</td>
<td>RARE</td>
<td>E</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>1,000,000 years</td>
<td>The event is inconceivable or fanciful over the design life.</td>
<td>BARELY CREDIBLE</td>
<td>F</td>
</tr>
</tbody>
</table>

Note: (1) The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa.

Qualitative Measures of Consequences to Property

<table>
<thead>
<tr>
<th>Approximate Cost of Damage</th>
<th>Description</th>
<th>Descriptor</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>200%</td>
<td>Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.</td>
<td>CATASTROPHIC</td>
<td>1</td>
</tr>
<tr>
<td>60%</td>
<td>Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.</td>
<td>MAJOR</td>
<td>2</td>
</tr>
<tr>
<td>20%</td>
<td>Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.</td>
<td>MEDIUM</td>
<td>3</td>
</tr>
<tr>
<td>5%</td>
<td>Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.</td>
<td>MINOR</td>
<td>4</td>
</tr>
<tr>
<td>0.5%</td>
<td>Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)</td>
<td>INSIGNIFICANT</td>
<td>5</td>
</tr>
</tbody>
</table>

Notes: (2) The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures.
(3) The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property.
(4) The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa.
Qualitative Risk Analysis Matrix – Level of Risk to Property

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Indicative Value of Approximate Annual Probability</th>
<th>Consequences to Property (With Indicative Approximate Cost of Damage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Almost Certain</td>
<td>10^1</td>
<td>VH</td>
</tr>
<tr>
<td>B – Likely</td>
<td>10^2</td>
<td>VH</td>
</tr>
<tr>
<td>C – Possible</td>
<td>10^3</td>
<td>VH</td>
</tr>
<tr>
<td>D – Unlikely</td>
<td>10^4</td>
<td>H</td>
</tr>
<tr>
<td>E – Rare</td>
<td>10^5</td>
<td>M</td>
</tr>
<tr>
<td>F – Barely Credible</td>
<td>10^6</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
1. For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.
2. When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current time.

Risk Level Implications

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Example Implications (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VH</td>
<td>Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.</td>
</tr>
<tr>
<td>H</td>
<td>Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.</td>
</tr>
<tr>
<td>M</td>
<td>May be tolerated in certain circumstances (subject to regulator’s approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable.</td>
</tr>
<tr>
<td>L</td>
<td>Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.</td>
</tr>
<tr>
<td>VL</td>
<td>Acceptable. Manage by normal slope maintenance procedures.</td>
</tr>
</tbody>
</table>

Note:
1. The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.